Data mining problem types nach CRISP-DM
Quelle: CRISP-DM 1.0 Step-by-step data mining guide Pete Chapman (NCR), Julian Clinton (SPSS), Randy Kerber (NCR), Thomas Khabaza (SPSS), Thomas Reinartz (DaimlerChrysler), Colin Shearer (SPSS) and Rüdiger Wirth (DaimlerChrysler). © 2000 SPSS Inc. CRISPMWP-1104 CRISP-DM
problem type | appropriate technique | |
2.1 Data description and summarization | Iris: Attribute > pandas describe | |
2.2 Segmentation | Clustering techniques | Iris kNN 3D |
Neural networks | ||
Visualization | ||
2.3 Concept descriptions | Rule induction methods | |
Conceptual clustering | ||
2.4 Classification | Discriminant analysis | |
Rule induction methods | CRISP-DM, S.68 unten: If SEX = male and AGE > 51 then CUSTOMER = loyal ... | |
Decision tree learning | iris decision tree | |
Neural networks | ||
K nearest neighbor | https://medium.com/@srishtisawla/k-nearest-neighbors-f77f6ee6b7f5 | |
Case-based reasoning | ||
Genetic algorithms | ||
2.5 Prediction | Regression analysis | analyticsvidhya ridge lasso > Regressionsgerade |
Regression trees | ||
Neural networks | ||
K nearest neighbor | ||
Box-Jenkins methods | ||
Genetic algorithms | ||
2.6 Dependency analysis | Correlation analysis | https://en.wikipedia.org/wiki/Correlation_and_dependence > Beispiele |
Regression analysis | ||
Association rules | kdnugget > grocery transactions | |
Bayesian networks | http://users.sussex.ac.uk/~christ/crs/kr-ist/lec09a.html > Reasoning as propagation | |
Inductive logic programming | ||
Visualization techniques | Tableau: Market Basket Analysis / Heatmap |
Entscheidungsbaum zur Auswahl von Algorithmen: scikit-learn.org > scikit-learn algorithm cheat sheet