CRISP-DM phases, tasks, outputs

Figure 3: Generic tasks (bold) and outputs (italic) of the CRISP-DM reference model (CRISP-DM, p. 12)

Business Understanding Determine Business Objectives Background
Business Objectives
Business Success Criteria
Assess Situation Inventory of Resources
Requirements, Assumptions, and Constraints
Risks and Contingencies
Terminology
Costs and Benefits
Determine Data Mining Goals Data Mining Goals
Data Mining Success Criteria
Data Understanding Collect Initial Data Initial Data Collection Report
Describe Data Data Description Report
Explore Data Data Exploration Report
Verify Data Quality Data Quality Report
Data Preparation Select Data Rationale for Inclusion/ Exclusion
Clean Data Data Cleaning Report
Construct Data Derived Attributes
Generated Records
Integrate Data Merged Data
Format Data Reformatted Data
Dataset Dataset Description
Modeling Select Modeling Techniques Modeling Technique
Modeling Assumptions
Generate Test Design Test Design
Build Model Parameter Settings
Models
Model Descriptions
Assess Model Model Assessment
Revised Parameter Settings
Evaluation Evaluate Results Assessment of Data Mining Results w.r.t. Business Success Criteria
Approved Models
Review Process Review of Process
Determine Next Steps List of Possible Actions
Decision
Deployment Plan Deployment Deployment Plan
Plan Monitoring and Maintenance Monitoring and Maintenance Plan
Produce Final Report Final Report
Final Presentation
Review Project Experience Documentation