Bowles_2.3_rocks: Visualizing Properties of the Rocks versus Mines Data Set
Listing 2-6: Parallel Coordinates Graph for Real Attribute Visualization—linePlots.py
- read_csv
- #plot rows of data as if they were series data dataRow = rocksVMines.iloc[i,0:60] dataRow.plot(color=pcolor)
- plot.xlabel("Attribute Index") plot.ylabel(("Attribute Values")) plot.show()
- Figure 2-2: Constructing a parallel coordinates plot
Listing 2-7: Cross Plotting Pairs of Attributes—corrPlot.py
- pd.read_csv
- plot.scatter(dataRow2, dataRow3) plot.xlabel("2nd Attribute") plot.ylabel(("3rd Attribute")) plot.show()
Figure 2-4: Cross-plot of rocks versus mines attributes 2 and 3
Listing 2-8: Correlation between Classifi cation Target and Real Attributes—targetCorr.py
Listing 2-9: Pearson’s Correlation Calculation for Attributes 2 versus 3 and 2 versus 21 - corrCalc.py
Figure 2-5: Cross- plot of rocks versus mines attributes 2 and 21
Listing 2-10: Presenting Attribute Correlations Visually—sampleCorrHeatMap.py
ipynb: $anaconda/ipynb-tasks/bowles/Bowles_2.3_rocks.ipynb