Bowles_2.2_rocks: Classification Problems: Detecting Unexploded Mines Using Sonar
Listing 2-1: Sizing Up a New Data Set—rockVmineSummaries.py (Output: outputRocksVMinesSummaries.txt)
- CSV einlesen
- Number of Rows / Cols
Listing 2-2: Determining the Nature of Attributes—rockVmineContents.py (Output: outputRocksVMinesContents.txt)
- Col# Number Strings Other
Listing 2-3: Summary Statistics for Numeric and Categorical Attributes—rVMSummaryStats.py (Output: outputSummaryStats.txt)
- colMean = np.mean(colArray)
- colsd = np.std(colArray)
- quantile boundaries
- unique = set(colData)
- number of elements having each value: catDict = dict(zip(list(unique),range(len(unique))))
Listing 2-4: Quantile-Quantile Plot for 4th Rocks versus Mines Attribute— qqplotAttribute.py
- Figure 2-1: Quantile-quantile plot of attribute 4 from rocks versus mines data
Listing 2-5: Using Python Pandas to Read and Summarize Data—pandasReadSummarize.py
- pd.read_csv
- summary = rocksVMines.describe()
ipynb: $anaconda/ipynb-tasks/bowles/Bowles_2.2_rocks.ipynb