Skizze Wollknäuel#

  • Mathilda Musterfrau

  • s-mmuster@haw…

  • MatNr: 12 34 567

Problemstellungen#

Beschrieben unter http://jbusse.de/dsci-ml_ws2022/Studienarbeit-SS-2023.html:

  • abschätzen Körpergröße

  • abschätzen Geschlecht

meine_Datei = "../data/MaennerFrauenKnaeuel.csv"

EDA Explorative Datenanalyse#

import pandas as pd
df = pd.read_csv(meine_Datei, sep=";")
df.head()
Unnamed: 0 age height spezies
0 0 0.0 60 b
1 1 5.5 88 b
2 2 13.8 0 b
3 3 4.1 91 b
4 4 13.8 165 b
df.describe()
Unnamed: 0 age height
count 1260.000000 1260.000000 1260.000000
mean 629.500000 25.519444 105.180952
std 363.874979 23.836270 70.534624
min 0.000000 0.000000 -6.000000
25% 314.750000 2.900000 30.000000
50% 629.500000 17.800000 127.000000
75% 944.250000 44.600000 169.000000
max 1259.000000 80.000000 208.000000
df.shape
(1260, 4)
df.columns
Index(['Unnamed: 0', 'age', 'height', 'spezies'], dtype='object')
df.spezies.unique()
array(['b', 'g', 'm', 'M', 'w', 'F', 'K'], dtype=object)

Problem 1: Abschätzen Körpergröße#

y = df.pop("height")
y
0        60
1        88
2         0
3        91
4       165
       ... 
1255    104
1256    208
1257    112
1258      0
1259    140
Name: height, Length: 1260, dtype: int64
X = df
X
Unnamed: 0 age spezies
0 0 0.0 b
1 1 5.5 b
2 2 13.8 b
3 3 4.1 b
4 4 13.8 b
... ... ... ...
1255 1255 28.1 K
1256 1256 3.2 K
1257 1257 0.0 K
1258 1258 29.9 K
1259 1259 12.9 K

1260 rows × 3 columns

from sklearn.tree import DecisionTreeRegressor

# Define model. Specify a number for random_state to ensure same results each run
melbourne_model = DecisionTreeRegressor(random_state=1)

# Fit model
melbourne_model.fit(X, y)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In [11], line 7
      4 melbourne_model = DecisionTreeRegressor(random_state=1)
      6 # Fit model
----> 7 melbourne_model.fit(X, y)

File ~/miniconda3/lib/python3.9/site-packages/sklearn/tree/_classes.py:1342, in DecisionTreeRegressor.fit(self, X, y, sample_weight, check_input)
   1313 def fit(self, X, y, sample_weight=None, check_input=True):
   1314     """Build a decision tree regressor from the training set (X, y).
   1315 
   1316     Parameters
   (...)
   1339         Fitted estimator.
   1340     """
-> 1342     super().fit(
   1343         X,
   1344         y,
   1345         sample_weight=sample_weight,
   1346         check_input=check_input,
   1347     )
   1348     return self

File ~/miniconda3/lib/python3.9/site-packages/sklearn/tree/_classes.py:172, in BaseDecisionTree.fit(self, X, y, sample_weight, check_input)
    170 check_X_params = dict(dtype=DTYPE, accept_sparse="csc")
    171 check_y_params = dict(ensure_2d=False, dtype=None)
--> 172 X, y = self._validate_data(
    173     X, y, validate_separately=(check_X_params, check_y_params)
    174 )
    175 if issparse(X):
    176     X.sort_indices()

File ~/miniconda3/lib/python3.9/site-packages/sklearn/base.py:591, in BaseEstimator._validate_data(self, X, y, reset, validate_separately, **check_params)
    589 if "estimator" not in check_X_params:
    590     check_X_params = {**default_check_params, **check_X_params}
--> 591 X = check_array(X, input_name="X", **check_X_params)
    592 if "estimator" not in check_y_params:
    593     check_y_params = {**default_check_params, **check_y_params}

File ~/miniconda3/lib/python3.9/site-packages/sklearn/utils/validation.py:856, in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)
    854         array = array.astype(dtype, casting="unsafe", copy=False)
    855     else:
--> 856         array = np.asarray(array, order=order, dtype=dtype)
    857 except ComplexWarning as complex_warning:
    858     raise ValueError(
    859         "Complex data not supported\n{}\n".format(array)
    860     ) from complex_warning

File ~/miniconda3/lib/python3.9/site-packages/pandas/core/generic.py:2069, in NDFrame.__array__(self, dtype)
   2068 def __array__(self, dtype: npt.DTypeLike | None = None) -> np.ndarray:
-> 2069     return np.asarray(self._values, dtype=dtype)

ValueError: could not convert string to float: 'b'

Aufgabe 2: Geschlecht abschätzen#