

Deliverable D.4.2

Knowledge Lenses and Process Support Tools

Authors: Victoria Uren,

Open University,
v.s.uren@open.ac.uk

Sam Chapman
University of Sheffield,
sam@dcs.shef.ac.uk

Aba-Sah Dadzie
University of Sheffield
a.dadzie@dcs.shef.ac.uk

 Piercarlo, Slavazza
Quinary S.p.a.,
x-media@quinary.com

Thomas Franz
University of Koblenz-Landau
franz@uni-koblenz.de

Yuangui Lei
Open University
y.lei@open.ac.uk

: Johannes Busse
Ontoprise
busse@ontoprise.de

Daniel Rabus,
Ontoprise
rabus@ontoprise.de

Roman Korf,
Ontoprise
korf@ontoprise.de

 Tran duc Thanh
University of Karlsruhe
dtr@uni-karlsruhe.de

Till Christopher Lech
CognIT
Till.Christopher.Lech@cognit.no

Work-package: WP4 Knowledge sharing and process support
Type: Technical Report
Distribution: Public
Status: Preliminary
Date: 21.12.2007
Deliverable Coordinator: Victoria Uren, Open University
Reviewers: Steve Fullerton/Andrew Maisey, Solcara, Christine Preisach, University of
Hildesheim
Area Coordinator: Steffen Staab, Univerity of Koblenz-Landau
Project Coordinator: Fabio Ciravegna, University of Sheffield
EU Project Officer: Ralph Feirgolla

X-Media • Deliverable D.4.2 • Open University • Version 1.1 1

ABSTRACT
The X-Media consortium has responded to the requirements for knowledge sharing
and process support with a range of task centric tools that are individually innovative
while working within the constraints of the X-Media architecture to facilitate
interoperability. The next tasks are to build the use case test beds and to evaluate the
tools in context. This report presents technical descriptions of the knowledge sharing
and process support prototype tools that will be used in phase 1 test beds. It describes
tools for annotation, semantic search and browsing, presentation of results and
analysis and sharing of results. For each tool its research aims and its contribution to
achieving X-Media requirements are detailed as well as a technical description of its
operation.

TABLE OF CONTENT
1 Introduction ..4
2 Subtask 4.2.1 Annotation ...5

2.1 The Open Document Format (ODF) Annotation Toolbox5
2.1.1 Technical Description...5
2.1.2 Status of the Document Annotation Tool Integration6

2.2 Image Annotation...7
2.2.1 Technical Description...7

2.3 Meeting the X-Media requirements ...11
3 Subtask 4.2.2 Knowledge Lenses – Search and Select ..12

3.1 LENA...13
3.1.1 Technical Description...15
3.1.2 Meeting the X-Media requirements..15

3.2 SemSearch..16
3.2.1 Technical Description...17
3.2.2 Meeting the X-Media requirements..24

3.3 K-Search...26
3.3.1 Technical Description...26
3.3.2 K-Search Functionalities ..28
3.3.3 Meeting the X-Media requirements..30

X-Media • Deliverable D.4.2 • Open University • Version 1.1 2

X-Media • Deliverable D.4.2 • Open University • Version 1.1 3

3.4 XXploreKnow!...34
3.4.1 Technical Description...34
3.4.2 Meeting the X-Media requirements..38

4 Subtask 4.2.3 Knowledge Lenses - Presentation of Results39
4.1 K-Views ...39

4.1.1 Technical Description...42
4.1.2 Meeting the X-Media requirements..43

4.2 The CORPORUM Summarizer ...46
4.2.1 Technical Description...47
4.2.2 Meeting the X-Media requirements..49

5 Sub task 4.3.1 Big Organizer for X-Media ..49
5.1 Semantic Scratchpad ..50

5.1.1 Technical Description...50
5.1.2 Meeting the X-Media requirements..51

6 Subtask 4.3.2 Basic Process Support ...52
6.1 The Koblenz Email tool ...52

6.1.1 Technical Description...52
6.1.2 Meeting the X-Media requirements..53

7 Conclusions ..53
8 References ..54

X-Media • Deliverable D.4.2 • Open University • Version 0.1 4

1 Introduction

Workpackage 4 is responsible for producing end user tools for knowledge sharing and
process support which exploit the semantic metadata extracted by Area 2 partners and
which operate with the X-Media kernel. The document has three aims,

1. To present the research contributions of each tool.

2. To detail what each tool does tool does, its inputs, outputs, user interaction etc..

3. To specify how each tool meets the project requirements.

Concerning point 3, extensive requirements work has been undertaken in the project.
This document especially references the top level requirements of X-Media
knowledge sharing defined in D4.1 [D4.1] and the specific needs of the use cases
described in D12.2 [D12.2] and D13.2 [D13.2]. The top level requirements in D4.1
concern interoperability, performance, handling heterogeneous knowledge,
fundamental functions and innovative X-Media functions. Each tool reported is
planned to be included in at least one use case as detailed in table 1. The use case
needs are expressed in the scenario description, particularly Technical Insertion Points
(TIPs).

Use case WP4 tools involved

R-R Experimental Vibration Interactive Annotation, K-Search, K-
Views

R-R Issue Resolution Summarisation tool, Interactive
annotation, K-Search, K-Views

FIAT Noise Curves SemSearch, LENA, semantic email

FIAT Competitor Analysis XXploreKnow!, Ontoprise, semantic
scratchpad

Table 1 Planned use of tools per use case

X-Media • Deliverable D.4.2 • Open University • Version 0.1 5

2 Subtask 4.2.1 Annotation
In task 4.2.1 several prototypes of interactive annotation tools are developed. During
the first phase of the project Ontoprise has worked on two different classes of tools:

• Three flavours of office documents annotation tool allow for annotating
regions of Open Document Format (ODF) text, presentation and spread sheet
documents.

• An image annotation tool allows for annotating and amending annotations of
regions within images

Scope of the annotation tools: Annotating text or images is narrowly related to three
typical other tasks:

• Identifying the media which are to be annotated interactively.

• Triggering IE and text annotation engines of area2 in order to get pre-
annotated media.

• Calling the interactive annotating component (i.e., run it), possibly by telling it
which image or text there has to be annotated.

These related tasks have to be performed by a workflow tool, a search tool or other
task supporting components. Several of such tools will be provided within wp4 and to
be integrated into the area 4 interaction system. It is the role of this X-Media user
interaction paradigm to relate knowledge search and knowledge browsing components
with the semantic scratchpad and various (interactive) annotation components.

2.1 The Open Document Format (ODF) Annotation Toolbox

2.1.1 Technical Description

Until summer 2007, three related text annotation tools have been produced. In order to
explore the needs of the users and the technical challenges of annotation interactions it
was decided to realize different interaction paradigms first. In a second step it has to
be decided which paradigm eventually should be the common one for all wp4
interactive components.

Text (ODT): Because of restrictions of the ODP API for the time being the tools
interactively can annotate only the whole document.

• Select (highlight) text segment (typically a word or phrase)

X-Media • Deliverable D.4.2 • Open University • Version 0.1 6

• Assign concept: navigate to concept or instance from ontology browser; then
mouse click to the „annotate“ button

• All (!) occurrences of the text within the document will be highlighted

• TBD: selecting an image should open the image annotation tool;
interaction with X-Media kernel required

Presentation (ODP): Because of restrictions of the ODP API for the time being the
tool interactively can annotate only whole slides.

• navigate to a single slide

• assign concept or instance from ontology browser to this slide.

• no highlighting so far

• PROBLEM: OpenOffice API shortcomings

Spreadsheets (ODS):

• select interactively a cell range (on a specific sheet)

• highlighting is supported, though not recommended:

• allowing highlighting would allow also changing spreadsheet content.

Since it is assumed that there is no write access to the documents to be annotated this
is it not feasible. However, OpenOffice does not allow to open spread sheets for
highlighting only in read only mode. This behaviour is considered a design flaw of the
API

2.1.2 Status of the Document Annotation Tool Integration

Ontoprise has presented it’s prototypes of the image and the ODF annotation tool in
spring and autumn 2007 (Athens, Milton Keynes). For the time being these tools are
narrowly integrated with interaction components of the commercial version of
OntoStudio®. The respective developing tasks ground on a non-obfuscatable closed
source head version of the company’s software stack. It is regrettable that it is not
possible to disseminate this version to the public. Ontoprise currently works on
implementing the X-Media components in a more lightweight and open source
version.

A note on the user interaction (UI) integration platform: The X-Media WP4
partners committed to ground the first integration of the various tools (annotation,
knowledge browsing, knowledge lenses) on the Eclipse rich client platform (RCP).

X-Media • Deliverable D.4.2 • Open University • Version 0.1 7

This decision will allow a comparatively easy and – at least from an interaction point
of view – sound integration of the partner’s components.

However, because it can be forseen now that a fat client might not be acceptable for
R-R and CRF there the challenges of a lightweight and browser based client
communication where also considered. Accordingly the image annotation tool was
crafted with Swing components (as opposed to Eclipse SWT) in order to become
independent from the Eclipse RCP. While the image tool can now be run stand alone
as a Java component this approach cannot be recommended. The problems and
challenges to be solved when someone does not want to rely on a certain platform are
too tedious and annoying compared to the research focus of X-Media.
Concerning the second phase of the X-Media project there should be a discussion
whether either (1) grounding completely on a sophisticated and highly tailorable
integration platform (e.g., the Eclipse RCP together with a public domain semantic
integration platform like the Neon Toolkit) during the lifetime of the X-Media project
or (2) moving to a common web based knowledge integration paradigm, ideally a
social web platform like a semantic wiki for user interaction.

2.2 Image Annotation

Beside the ODF annotation components an image annotation component was
developed. This component differs from the former components in that it can be run
as a java stand alone application.

2.2.1 Technical Description

Interaction with the knowledge browser for the time being is simply done by drag and
drop. (This however does not mean that a more sophisticated interaction according to
a common interaction paradigm is not urgently feasible.)The interaction steps are:
(1) Select a still region within an image. Draw a line, rectangle or polygon.Optionally
colourize a selection. Optionally add / remove / rearrange nodes. Optionally flex the
edges to 2nd order polynomials or Bezier curves (as requested from WP7 raw data).

(2) Select an arbitrary annotation string (ideally an URI) in a knowledge browser (e.g.
Neon Toolkit class or instance browser; Firefox Web browser; Office Document).
“Assign” the selected concept or instance from ontology browser to a segment. TBD:
Define the interaction / HCI paradigm of „assigning“ an annotation.

(3) Drag ‘n drop the annotation string onto an still region. Moving the mouse over a
still region shows all annotation strings.

 The annotation tool is deployed as a java stand alone application together with the
source code. Change directory to the directory COMM_Interface > imageannotation.
There you should find the batch file start-imageannotation.bat. Execute it. You should
get a window similar to this one:

As long the image annotation tool is not integrated into a larger tool suite some
additional interaction elements are needed.

Configure a Sesame repository: First you have to connect to an RDF repository:
Press the button “Conf. COMM” in order to configure a Sesame2 repository. Choose
between four possibilities:

(1) „Memory-Repository“ resides temporarily in the main memory. Allocating an in
memory repository automatically loads the COMM Ontologies from the directory
„ProtegeProjects“. You can use an in memory repository easily for testing. However,
all changes will be lost after the application stops running.

(2) „Persistent Memory-Repository“: Data will be kept persistently on your disc.
Navigate to an existing directory. If it is empty a new store will be allocated. If it is
not empty an existing store will be read.

(3) „Remote Repository“: Connect to a Sesame repository on the net. Give the Sesame
URI and the ID of the repository.

(4) „Memory-Repository End-Point Test“.Similarly to (1). In addition a COMM
Image Object will be allocated in the repository: Copy the endpoint reference of the
allocated image! (This is a unique id, similar to http://test.x-media.org/id-bcb66d01-

X-Media • Deliverable D.4.2 • Open University • Version 0.1 8

X-Media • Deliverable D.4.2 • Open University • Version 0.1 9

75e1-4911-bb1e-5f5f2d638ecc)You will need it in the next step to read in the
allocated object.

Load an image and it’s annotations: Once you have started the image annotation
tool successfully you should load an image. (Note that selecting the image which is to
be annotated preferably should be done by another X-Media application like the
search tool or the knowledge browser).

Path 1: Load an image from an URI: Press the button “load image from URL” and
give the URI of an image (e.g. http://upload.wikimedia.org/wikipedia/
commons/4/4f/Scheibenbremse-magura.jpg). Then press the button “read annotations
from COMM”. The tool looks up all endpoint references available for the give URL
and loads the respective annotations. All annotations are all shown in parallel.
Path 2: If you have chosen to work with (4) “Memory-Repository End-Point Test”
you do not have to load an image first. You directly can press the button “read
annotations from COMM”. For there is no image loaded you will directly be asked for
an end point reference. You should paste here the endpoint reference you have copied
before while configuring the repository. The endpoint test loads the image from
http://upload.wikimedia.org/wikipedia/commons/4/4b/Brake.agr-edit.jpg . There are
two annotations which will we shown.
Remark: In a more integrated UI it is up to other components to select which image
(given by URI or by endpoint reference) should be annotated. In fact the “load image”
buttons do not belong to the core of the annotation tool.

Annotate a region: Annotating a region comprises, in principle, three steps: (1)
Select the region to be annotated. Simply draw a polygon or select an existing one. (2)
Select a resource you will use in order to annotate the region. In general selecting this
instance is not up to the annotation tool itself. Instead it is, e.g. the X-Media
knowledge browser or search tool, which allows identifying the instance we want to
use for the annotation. (3) Instantiate the annotation, i.e. instantiate a link between a
region and a resource. Note: For the time being this instantiation of an image
annotation is done merely by drag and drop: Select the URI you might want to use
for annotating the region, e.g. with Firefox, and drag it to the image region.

Here the user navigated to a page about bike brake adjustment. She highlights the
URL, grabs it with the mouse and drops it to the region previously selected in the
annotation tool.

Drag and drop might look somewhat tedious from a usability point of view, at least
for the current stand alone application. But once we have defined the platform for
integrating the various X-Media user interface components (Ontoprise suggests to

X-Media • Deliverable D.4.2 • Open University • Version 0.1 10

X-Media • Deliverable D.4.2 • Open University • Version 0.1 11

commit for the Eclipse Rich Client Platform) we will develop many more and much
nicer workflows to establish this annotation link between resource and data region
interactively. Our text annotation tool, which is more narrowly integrated in
OntoStudio (head version, not suitable for roll out for the time being), allows
annotating a text by selecting the appropriate instances and concepts with standard
ontology browsing plugins and then simply pushing an annotate button.

How to test the tool: Start the tool. Connect it to a repository. “Load image from
URL”, e.g. http://upload.wikimedia.org/wikipedia/en/8/8f/Center_Pull_Brakes.JPG .
Define the still region to be selected, i.e. draw a polygon or a rectangle. Annotate the
still region with a resource, e.g. an URI you have browsed to with an ordinary web
browser. Write the annotations to the store. Select each still region and remove it (you
have an image without annotations now). Read annotations from the store. The
regions and it’s annotations you defined before are displayed.

2.3 Meeting the X-Media requirements

The primary addressees of the interactive annotation tools are the end users described
in the use cases of R-R and CRF. The main purpose of the tool is to visualize specific
aspects of image and text annotations and allow for refining or amending existing
annotations and adding new annotations.
While there seems to be evidence from the use case descriptions that none of the end
users will have the resources to identify and annotate segments manually in detail
basic functionality is provided for that. This is because secondary addressees are
experts producing the text, image or raw data IE components within area 2. While the
user might find the image segmentation and annotation functionality useful she will
recognize that the annotation tools do not (and cannot) allow editing and amending at
each detail the COMM Ontology and API allows to state. The interactive annotation
tool is not intended to be an interactive front end for researchers which need to amend
annotation details in order to e.g. improve IE machine learning algorithms.

Concerning the top level requirements, the annotation tool addresses the following
(numbers refer to sections in Deliverable 4.1 [D4.1]):

3.1.1 Interoperability between Tools and Tool Components: The current prototype
of the image annotation tool is implemented as a stand alone java application.
However, Ontoprise strongly advises to integrate it with other tools by means of
standard UI integration platform, i.e. the Eclipse Rich Content Platform (Eclipse RCP)

X-Media • Deliverable D.4.2 • Open University • Version 0.1 12

or a social web platform. This should make it compatible with most of the other WP4
knowledge sharing components.

3.1.2 Interoperability with the X-Media Architecture: All interactive annotation
tools use the COMM API to interact with the X-Media kernel.

3.1.3 Interoperability with Relevant Standards: Compliance with the X-Media
semantic annotation model is provided by using the COMM API.

3.2 Performance: As only one document can be annotated at a time performance is
not expected to be an issue.

3.3 Handling Heterogeneous Knowledge: For the time being provenance
information is not shown to the user. However, if it is possible to integrate the
annotation tools within the Eclipse RCP framework with other semantic components
(e.g. from the NeOn toolkit) an elegant and flexible way to allow all sorts of
provenance annotation editing can then be provided.

3.3.2 Images, Text and Raw Data: For the time being a separate tool for text,
presentation, spread sheet and image annotation is provided. Integrating theses tools
can easily be done i.e. with the Eclipse RCP.

3.3.3 Working concurrently with multiple domain models is fully supported if we
can use the NeOn toolkit.

3.4.1 The tools support a broad diversity of users by means of multi domain models.
Integration with other wp4 components under a common UI additionally allows a fine
grained user tailoring.

3.5 Innovative X-Media Functions: The interactive annotation tools realize Cross-
Media Annotation by focusing on a parallel, integrated use of single media annotation
combined with other standardized semantic tools like knowledge (A-Box) browser or
the T-box browser from the NeOn Toolkit.

3 Subtask 4.2.2 Knowledge Lenses – Search and
Select
Semantic search/select is a functionality which allows end users or software agents,
such as a semantic scratchpad service, to specify their information seeking needs by
means of constructing complex queries about the underlying knowledge in the

X-Media • Deliverable D.4.2 • Open University • Version 0.1 13

application and returns precise results to the queries. It provides a way to filter and
select the required knowledge (i.e. semantic metadata) from the underlying
repositories which are often heterogeneous and large scale.
A search and select lens feature is central in all of the use cases because filtering the
knowledge repository is an essential first step in all knowledge sharing activities.
Without some form of selection the user would simply be overwhelmed by the volume
of metadata. In phase one, we present four different search and select tools which will
be tested in at least one use case. The tools are: LENA a semantic browser that can
browse over semantic email, SemSearch a keyword search engine with refinement
facilities, K-Search a combined metadata and text search engine, and XXploreKnow!
a combined keyword search tool and visual knowledge browser.

3.1 LENA

LENA1 stands for LEns based NAvigator. A lens represents a particular view onto
RDF data and is described by the Fresnel Display Vocabulary [Pietriga et al. 2006].
LENA supports viewing RDF data in a web browser, rendered according to the lens
descriptions provided. The use of multiple lenses is supported and these are indicated
when available for a resource. The design goal is to make different views onto the
same data easily accessible for the user. As shown in Figure 1, LENA lists available
lenses in a box (named Default Lenses) on the left. The box below (named Included
Classes) lists RDF classes referenced in the underlying RDF repository and the
number of instances for each class. Furthermore, a snowball-like icon indicates that
lenses are defined at least for some of the instances.

1 http://isweb.uni-koblenz.de/Research/lena

Figure 1: Screenshot of LENA

The biggest portion of the screen (the right side) displays instance data. Figure 1
shows the standard view for instance, i.e. the RDF-lens where all triples are shown
where the resource shown in the header is the subject. That resource is accompanied
by multiple icons. Again, if a snowball-icon is shown that indicates that a lens is
available for a resource. Clicking on the snowball-icon leads to a view according to
another lens. Figure 2 is an example of a lens for a person, representing similar
information shown as in Figure 1 in a more human-readable way.

X-Media • Deliverable D.4.2 • Open University • Version 0.1 14

Figure 2: Screenshot of LENA, Application of a lens for persons

3.1.1 Technical Description

LENA is implemented as a web-based application based on Java Servlet technology.
Lenses are written in RDF using the N3 format. To write lenses for complex RDF
structures created through sophisticated ontology frameworks like COMM [Arndt et
al. 2007] or X-COSIM [Franz et al. 2007] as they are employed in X-Media, LENA
supports SPARQL2 selectors. As a comprehensive query language for RDF, SPARQL
complies with the requirements needed to select from these complex structured RDF
graphs. As an extension to the Fresnel engine developed as part of the Simile project3,
LENA adds Fresnel SPARQL selectors.

3.1.2 Meeting the X-Media requirements

Knowledge lenses are one of the contributions of the X-Media project planned for
WP4. LENA implements one interpretation of a knowledge lens based on an
interpretation of RDF data towards different visual representations. Such different
views are required in several of the X-Media use cases, e.g. in the Issue Resolution
use case at R-R where a document-centric view or issue-centric view onto resources
can be considered beneficial (cf. to TIP 3 and TIP 5, D12.2). As a generic mechanism

X-Media • Deliverable D.4.2 • Open University • Version 0.1 15

2 http://www.w3.org/TR/rdf-sparql-query/
3 http://simile.mit.edu

LENA-based knowledge lenses, can also be applied in Fiat use cases (cf. to TIP 1, 2a,
9).

3.2 SemSearch

As discussed in our review paper [Uren et al.], the requirements space for semantic
search systems can be viewed as having four dimensions (see figure 3): the kinds of
queries that can be made, the search environment, problems intrinsic to semantic
searching, and supporting the user in formulating iterative and exploratory searches.

Figure 3 A pyramid representing the requirements space for semantic search systems.

One key contribution of the current SemSearch prototype is its mechanism for
keyword based querying of semantic metadata, which makes semantic search intuitive
for ordinary end users. Particularly, it allows users to make searches without having to
know either the structure of the ontology, tackling the issue of understanding the
semantic space, or a formal search language. The SemSearch search mechanism starts
by interpreting the user query and matching senses of the keyword terms, from the
ontology, that could be used in the search. Taking a components-based approach
[Uren 2006] it then generates a collection of formal search statements and selects the

X-Media • Deliverable D.4.2 • Open University • Version 0.1 16

X-Media • Deliverable D.4.2 • Open University • Version 0.1 17

best to formulate the search. This process is described in detail below and in our
recent papers [Lei 2006] [Lei et al.].
Another important contribution made by SemSearch is the methodology designed for
supporting multi-keyword semantic searching, which is computing formal queries
from user queries. Since the publication of the SemSearch approach in 2006, at least
two other works have been published based upon this methodology. The first is about
SPARK [Zhou 2007], which builds a query tree from keyword input and then
produces a ranking of the multiple possible queries (SemSearch currently takes a
heuristic approach to selecting from the multiple possible queries). The second
concerns an alternative graph-based approach to query translation being explored by
the University of Karlsruhe (see section 3.4 and [Tran 2007]). The combination of the
efforts of the Open and Karlsruhe Universities puts X-Media at the forefront of
international research in the emerging field of semantic query interpretation.

3.2.1 Technical Description

As shown in Figure 4, SemSearch comprises i) a query interface, which supports the
specification of multi-keyword queries; ii) a keyword search engine, which makes
sense of user queries by exploiting the domain ontology and the extracted metadata;
iii) a query translation engine, which derives appropriate formal queries from the user
query; iv) a query refinement engine, which allows the user to reformulate their query
towards their information seeking needs; v) a ranking engine, which presents the
search results in an order that indicates their degree of satisfaction for the user query;
vi) a user interface component, which supports all the user interaction required for
query specification and refinement and results presentation. The system also provides
an index engine, which indexes semantic entities contained in the domain ontology
and the gathered metadata repositories.
Although it is iterative, a search in SemSearch often takes five steps, namely
interpreting user queries, generating formal queries, query refinement, querying, and
ranking. Prior to the search process, there is an important step called indexing. Now
let us get a closer look at each step to understand how the search tool works.
Step0 – Indexing: Like any other search system, SemSearch needs to pre-index the
search targets, which includes the specified semantic data repositories and the
underlying ontologies in the context of data oriented semantic search. Briefly, we use
Lucene4 to build the indexes. The parts of the RDF content that are indexed are the

4 http://lucene.apache.org/

local names and labels of semantic entities (including concepts defined in the
ontologies and the instances and relations contained in the data content) and their
short literal values. The rationale behind this is that these descriptions tend to be able
to reasonably reflect the meaning of the indexed entities.

Figure. 4. An Overview of the SemSearch Architecture

Step 1 - Interpreting User Queries: The task of this step is to find out the semantic
meanings of the keywords specified in user queries so that the search engine knows
what the user is looking for and how to satisfy the user query. From the semantic point
of view, one keyword may match i) general concepts (e.g., the keyword “car seats”
which matches the concept Car-Seat), ii) semantic relations between concepts, (e.g.
the keyword “make” matches the relation has-maker), or iii) instance entities (e.g., the
keyword “Fiat” which matches the instance Fiat-Company). The system achieves this
task by looking up the indexes built in the indexing step. As described earlier, we used
the local names, labels, and short literal vales as the bases for finding matches.
Step 2 - Generating Formal Queries. In this step, the search engine takes as input
the semantic matches of user search terms and outputs appropriate formal queries. We

X-Media • Deliverable D.4.2 • Open University • Version 0.1 18

classify user queries into two types: i) simple queries, which only comprise two
keywords; and ii) complex queries, where more than two keywords are involved.
Dealing with simple user queries. As the types of semantic entity match combinations
are fixed in simple user queries, we developed a set of templates to describe how to
retrieve relations between two semantic entities. Among all the combinations, there
are three most possible types between two keywords. This is because we had made the
assumption that the subject keyword matches a class concept, in the proposed query
interface. Figure 5 shows the templates for these combinations.

Figure. 5. Selected SeRQL Query Templates for Simple User Queries.

Now let us investigate the first combination where both keywords in a query match
classes. The search results are expected to be the instances of the class Cs (i.e. the
match of the subject keyword) which have explicitly specified relations with the
instances of the class Ck (i.e. the match of the other keyword). For example, when
querying for “cars: student”, the expected results are those instances of the class Car
that have some kind of relation with the instance Student, e.g., best selling.

Please note that there are situations where no class matches could be found for the
subject keyword. The focus of user query in such situations varies according to the
type of the semantic matches of keywords. We have also developed templates for such
queries. Due to the lack of space, please refer to [Lei’s KMi technical report] for
details.

X-Media • Deliverable D.4.2 • Open University • Version 0.1 19

X-Media • Deliverable D.4.2 • Open University • Version 0.1 20

Dealing with complex user queries. For complex queries (which involve more than
two keywords), the search engine needs to combine the semantic matches of each
keyword together and construct queries for each of the combinations. A key
operational problem is that in real world situations there can be a large number of
matches and hence much more combinations. Rules are therefore needed to reduce the
number of matches for each keyword. We used several heuristic rules, including, i)
the subject keyword always matches class entities when there are more than two
keywords involved in the user query, ii) choosing the closest entity matches to the
keyword as possible, and iii) choosing the most specific class match among the class
matches. These rules can significantly reduce the number of entity matches.

Step 3 – Refining User Queries. The system allows the user to reformulate his/her
queries at a basic level and an advanced level. At the basic level, the tool allows the
user to view the entities found and select those which should be used in the search, as
shown in Figure 6. At the advanced level, the system allows the user to exploit the
structure of the associated ontology to narrow down or broaden the search scope. We
call it a knowledge-lens based refinement. Figure 7 shows the user interface. Hence,
the system has developed a multi-mode interaction routine, which supports end users
in making semantic queries by combining keyword-based search and view-based
search.

Step 4 - Querying the Data Repositories. In this step, the system queries the
underlying data repositories using the selected formal queries derived from the user
query in the previous step. The search results are semantic data entities that satisfy
those formal queries.

Step 5 – Ranking the Search Results. We have examined three factors that may
reflect the relevance of the results to the user query, including the similarity, the
domain context, and the query context factor. For the sake of simplicity, we treat all
three factors as equally important in ranking at the moment.

Figure. 6. Basic Refinement Support Offered by SemSearch

− The similarity factor measures the closeness of a match to the keyword syntactically
(i.e., string similarity), which is derived from the text search engine employed. In
future, we will add a mechanism to compute the semantic similarity of the match to
the keyword.

− The domain context factor helps decide the closeness of the matches to the keyword
from the specific domain point of view. For example, with the keyword “John”, is
the user more likely to mean the person John-Domingue than the person John-Smith?
The system computes such ranking by looking into the popularity of the entity in the
specified repositories.

− The query context factor takes the position of a query term and its expected match
type

(i.e., class, instance, and property) into account when ranking the match results.
Several heuristic rules are used to rank the matches. For instance, the subject keyword
(i.e., the first keyword in a user query) is assumed to refer more often to a class than
an individual entity. Thus, for a subject keyword, class matches would get higher
ranking.

X-Media • Deliverable D.4.2 • Open University • Version 0.1 21

Figure. 7. Advanced Refinement Support Offered by SemSearch

End User Support. SemSearch offers a user interface component, which supports all
the interactions required for formulating and refining user queries and presenting
search results. Four major facilities are provided by the main user interface, including

i) allowing the specification of keyword queries;
ii) displaying the matches of the keywords;
iii) allowing the ticking on/off keyword matches to refine user queries;
iv) displaying the final search results returned by the Sesame Query Engine.

Tree-based views and graph-based views are generated to help users understand the
search results. More advanced query refinement is supported by the concept of
knowledge lenses, which supports a zoom-like facility in exploring the search space.
It supports narrowing the search focus by going down to more specific classes (or
topics) or broadening the search focus by going up to more generic classes. Below we
present a walk through of a typical user session with refinement.

• Task1: Typing in query “News:phd students”

X-Media • Deliverable D.4.2 • Open University • Version 0.1 22

• Task2: Picking up the right senses found from the ontologies and
repositories

 The class news-item for the keyword news
 The class phd-student for the keyword “phd students”

• Task3: Viewing the results of the basic search

Senses list of
Keywords

X-Media • Deliverable D.4.2 • Open University • Version 0.1 23

• Task 4: Refining search results by broadening the search target (i.e. news) to a
more generic class

• Task 5: Viewing the refined results

Broaden
search from
news stories

t

Adding new entry
of refinement

Performing
fi t

There are 49
news entry
results

11 are written by PhD
students. Among
them 7 mention other
students

45 news entries
mention PhD
students

The hits (i.e. news entries) are
classified according to their

common features (e.g., relation

X-Media • Deliverable D.4.2 • Open University • Version 0.1 24

The results have
been broadened.
They now include

3.2.2 Meeting the X-Media requirements

In this section, we discuss how well SemSearch meets the X-Media requirements
outlined in D4.1.

3.1 Interoperability

3.1.1 Interoperability between Tools and Tool Components - The current
prototype of SemSearch is implemented in Eclipse and Sesame2, using the API
provided by the X-Media Kernel. As such, it should be compatible with most of
the other WP4 knowledge sharing components that operate on the X-Media
Kernel.

3.1.2 Interoperability with the X-Media Architecture – SemSearch uses the
AccessKnow API to interact with the X-Media kernel.

3.1.3 Interoperability with Relevant Standards – SemSearch searches RDF-
based documents. Hence it works with RDF, RDFS, and OWL.

3.2 Performance

3.2.1 Response Times for Large Scale, Cross Media Search – SemSearch has
not yet been tested on a large scale testbed. It is known that the query
interpretation process can sometimes produce very large numbers of queries and
that this can be problematic for performance speeds. One of the key issues that
will be investigated in the future is how to deal with large-scale search
environments.

3.2.2 Quality of Results – This needs to be tested in the evaluation phase.

X-Media • Deliverable D.4.2 • Open University • Version 0.1 25

3.3 Handling Heterogeneous Knowledge

 SemSearch has not yet been tested with heterogeneous data. It searches OWL,
RDF only. A multi ontology version is under development.

3.4 Fundamental Functions

3.4.1 Diversity of Users – SemSearch has a very simple mode for naïve users
who can start by just typing one keyword but also supports the formulation of
quite complex multi-keyword searches. The technology that underlies this
flexible approach is the semantic interpretation of keyword queries. SemSearch
is designed with general semantic search in mind rather than one particular user
group.

3.4.2 Search Refinement – As described in the section above, SemSearch
currently has two search refinement methods. One presents the user with a list of
semantic matches from which they can pick the ones they wish to use in the
search. The other allows “zooming” by allowing the user to browse up and
down fragments of the ontology to select terms.

3.4.3 State of the Art Functions – of the functions listed in D4.1, SemSearch is
most focused on developing ranking methods. As described earlier in the section
above, we have explored three factors to rank the search results, namely
similarity, domain context, and query context. In future, user profile will be
included in the ranking loop in order to present the results better.

3.5 Innovative X-Media Functions – The X-Media functions that SemSearch
aims to provide come in the category of Knowledge Lenses. It provides
mechanisms for selecting and viewing facts. Facilities such as the visualization
of results clusters help the user to gain an overview of the contents of the
knowledge base to help users refine their search and reset the focus until it
meets their needs.

Phase 1 deployment - Within phase 1, SemSearch will be deployed in the Noise
Curves Analysis and Evaluation test bed described in section 5 of D13.2 [D13.2
2007]. It will be used, for example to search for facts using FIAT model name,
segment, competitor’s basket, performances etc. It is anticipated that this will require
some small extensions of the tools. Specifically, because the use case is strongly

X-Media • Deliverable D.4.2 • Open University • Version 0.1 26

focussed on the noise curve data, the presentation of tables and graphs will have to be
included (possibly presenting graphs as images). We will also need to investigate
whether SemSearch needs to integrate directly with specialist services produced by
the University of Llubjana, particularly the service for similarity search.

3.3 K-Search

K-Search is a semantic search interface capable of bringing together the worlds of
semantic conceptual search and also keyword search. These search modalities can be
utilised independently as well as together in a hybrid modality. These novel
interaction methods allow flexible searching of knowledge which may only be
partially represented in the domain ontology. Following is a technical description and
then a discussion of how this helps aid the developmental aims of X-Media and its
workpackages.

3.3.1 Technical Description

Storing Knowledge for reuse has two distinct types:

• Structured: knowledge is formally organised into a predefined rigid structure used
for direct knowledge access. In the case of X-Media this structured store uses RDF
and ontologies. Concepts in any initial document can be related through logical
statements, e.g., headsup_decision for an application for a technical_variance on
engine_familyA still under investigation, to an ontology, this allows the retrieval of
all instances where headsup_decisions have been made for instances of
engine_familyA have the vale under_investigation. Such storage enables:
quantitative analysis, reasoning, automatic manipulation and direct access to
contained knowledge. All these are central aspects of most X-Media technology;
however, structured data storage has some limitations. Structured data storage can
be inflexible regarding access to it is constrained to that of the storage mechanism
itself; for instance knowledge within a document that is not represented in
structured data is lost. Further to this, designing structured resources for holding
knowledge is costly, and although covering the typical cases, may exclude specialist
usage. Even the best ontology is unlikely to cover all user information needs, as
these may change with time and in ways unexpected during the design.

• Unstructured: data is not coded into a predefined structure, but instead is indexed
to allow free-text retrieval on a token basis. An example of unstructured data access
is provided by search engines that index and retrieve knowledge from enterprise
archives or the whole web. A user typically expresses their knowledge needs by

X-Media • Deliverable D.4.2 • Open University • Version 0.1 27

entering a query; the search engine uses its index to retrieve potentially relevant
documents for the input query terms. While this approach provides a high degree of
flexibility, as the data retrieved matches the query, there is no guarantee the
retrieved result set contains all and only relevant data intended by the user. As a
consequence, quantitative analysis is highly unreliable. Much of the effectiveness of
this technique depends on the text source; engineers’ reports are generally
extremely succinct and the language very specialised, two conditions highlighted as
critical for the success of traditional unstructured, keyword-based retrieval. Another
limitation is in the retrieval of entire documents; manual reading of all documents’
content is required to retrieve the specific knowledge and make optimal use of the
results. It must be noted that although unreliable, with contextual information
missing and issues of conceptual ambiguity, unstructured knowledge repositories
still have a single advantage over structured approaches, that they can encompass
everything within documents and not just pre-assigned concepts.

Structured and unstructured data both have advantages and disadvantages; one
providing order and precision, the other flexibility of use. To take advantage of both,
K-Search uses a dual store (K-Store) that simultaneously holds structured and
unstructured knowledge. For unstructured information a normal keyword index is
used, in this case SOLR, alongside a semantic index storing structured triples. K-
Search differs from CSail, an approach where conceptual instances are keyword
indexed; in our approach entire documents are indexed thus completing system
coverage of documents content.

The semantic store facilitates higher level inference as well as additions to the
underlying data without impairing functional effect. In particular stores such as 3-
store5, Allegrograph6 and Sesame (used in this case) facilitate flexible query through
the SPARQL7 query language. This freedom along with the improved coverage of
keyword approaches allows users a more flexible knowledge access than that offered
by a single mechanism alone. In order to combine structured and unstructured
querying K-Search performs three offline steps:

• indexing documents using keywords,

5http://sourceforge.net/projects/threestore/
6http://agraph.franz.com/allegrograph/
7http://www.w3.org/TR/rdf-sparql-query/

X-Media • Deliverable D.4.2 • Open University • Version 0.1 28

• defining a domain ontology,

• gathering structured knowledge using an ontology.
The dual storage K-Store supports more flexible interaction as the user is able to
choose the most appropriate search mode for the task in hand, as described in the next
section.

3.3.2 K-Search Functionalities

To take advantage of the double storage facility in K-Store, K-Search combines the
flexibility of unstructured retrieval with semantic structure, making synergistic use of
the strengths of both techniques, and supporting users in focusing on relevant issues
with faster retrieval and more accurate results.
From a user point of view, structured queries must be formulated in a logical language
that has to be learned and remembered. Conversely, unstructured retrieval has the
advantage of being all encompassing - any term can be searched for independently of
previous processing - and straightforward to use, - terms are simply entered into a
(keyword) query. The interface of K-Search supports the user in formulating queries
in whichever way suits their skills and information requirements.
The hybrid approach (HS) adopted in K-Search uses and fuses keyword search (KS)
and ontology search (OS). The user interface of K-Search has been designed to
support the composition of Hybrid queries as well as quick changes from one mode to
another, KS only or OS only (see Fig.8).

Fig. 8. K-Search querying interface and visualisation of results. Please note that portions of the
text have been deliberately obscured for reasons of confidentiality.

When a query is performed, the result set contains the reports where the concepts and
the keywords in the query co-occur. The set is displayed as a list in the mid-right
panel of the interface; each item in the list shows the name of the document and the
values of the fields used for OS. Individual reports are displayed on the bottom right
on request (by clicking on the file name for a list item). Multiple documents may be
opened simultaneously, each displayed in a different tab. The original layouts of the
documents are maintained (see Fig.8). Annotations are made evident through colour
highlighting, and are the means to advanced features or services: for example, clicking
on a concept results in a query expansion with the selected term. One of the
advantages of structured data is the support for quantitative analysis of the retrieved
result set using graphs and charts. K-Search allows users to selected concepts from the
ontology to display the retrieved set with respect to the selected parameters. The graph
in the centre of Fig.8 first refines the query by restricting results returned to
request_date equal to 2005 only, then draws a plot showing the operators for each
(concept) engine_mark. Each plotted operator (each bar in the example) is active and
may be clicked on to focus on the sub-set of documents that contains that specific
occurrence.

X-Media • Deliverable D.4.2 • Open University • Version 0.1 29

3.3.3 Meeting the X-Media requirements

In this section, we discuss how well K-Search meets the X-Media requirements
outlined in D4.1 (numbering refers to the section headings in D4.1).

3.1 Interoperability

3.1.1 Interoperability between Tools and Tool Components: K-Search is Java-
based, and uses JavaScript and CSS for the user interface. It is therefore platform-
independent, and should be compatible with other Java-based tools for WP4. Further,
the web-based interface means that it is easily used over a network, with the client
requiring only a relatively recent version of a web-browser.

3.1.2 Interoperability with the X-Media Architecture: Although K-Search was
developed independently of the X-Media project it should still be able to
communicate with the X-Media kernel. K-Search uses RDF to store the knowledge;
query results are retrieved from its triple store using SPARQL and the actual
documents from which each triple is retrieved is what is displayed using K-Search’s
user interface (shown in Fig. 8). In order to interface with other X-Media tools K-
Search will read from and write to the dedicated triple stores for X-Media via the
kernel. The extract below shows part of the result set for the query described in
section 3.3.1, using a simple XML document.

<?xml version="1.0"?>
<search_results>
 <search_details id="0">
 <search_type>concept_search</search_type>
 <hits>28</hits>
 <output_concepts>
 <concept>has_file_location</concept>
 <concept>has_heads_up_decision</concept>
 <concept>has_heads_up_date</concept>
 <concept>has_family</concept>
 </output_concepts>
 </search_details>
 <documents>
 <document>
 <has_file_location>path_to_file</has_file_location>
 <has_heads_up_decision>UNDER INVESTIGATION</has_heads_up_decision>
 <has_heads_up_date>xx/xx/2005</has_heads_up_date>
 <has_family>engine_familyA </has_family>
 </document>
…

X-Media • Deliverable D.4.2 • Open University • Version 0.1 30

X-Media • Deliverable D.4.2 • Open University • Version 0.1 31

3.1.3 Interoperability with Relevant Standards: K-Search searches RDF-based
documents. Hence it works with RDF, RDFS, and OWL. K-Search outputs results
using RDF/XML triples.

3.2 Performance

3.2.1 Response Time for Search: K-Search has been tested on a corpus of 18,097
Event Reports provided by Rolls-Royce. A hybrid search that retrieves 20 matching
documents over one corpus, for example, displays the result list to the interface in
approximately 2 seconds, running over a network with up to 12 simultaneous users. A
keyword search returning 161 and 4181 documents take approximately 2s and 57s
respectively. K-Search was evaluated by Rolls-Royce users: it was judged fast or very
fast in executing the query allowing a quick task completion by 98% of users.

3.2.2 Quality of Results: The results of in-situ user evaluations to date show that
users understand the concept of hybrid search implemented in K-Search. There is a
significant decrease in user time and effort required to retrieve knowledge from the
corpuses used for the current implementations, compared to existing methods for
searching over these corpora. Results of user and system evaluations for K-Search are,
overall, very positive, showing very high user acceptance; [Bhagdev et al., 2007,
Lanfranchi et al., 2007] provide more detail on the application and the evaluations
carried out. K-Search user evaluation allowed to asses the system reliability in
retrieving relevant documents; the reliability was high with 82% judging K-Search
reliable or highly reliable. A more in depth in vitro evaluation conducted, with the aim
of showing that Hybrid Search can provide better results than the pure keyword based
or semantic search, by combining their reciprocal strengths. The evaluation was done
considering a set of 21 topics generated on the basis of observed tasks, sequences of
user queries recorded in the event corporate database or as elaboration of direct input
from users (i.e. examples of their recent searches). Hybrid Search reports very high
precision (same as ontology-based search, +51% with respect to keyword-based
search), and the highest recall (+46% with respect to keywords and +109% with
respect to ontology-based search). F-Measure is +49% with respect to keywords and
+55% with respect to ontology-based.

3.3 Handling Heterogeneous Knowledge

X-Media • Deliverable D.4.2 • Open University • Version 0.1 32

3.3.2 Images, Text and Raw Data: K-Search has been built to focus upon textual
data, however, it may be used to search images and raw data for which metadata exists
in textual format. K-Search currently has an implementation that retrieves images for
which metadata stored in textual format satisfies query criteria.

3.3.3 Multiple domain models: K-Search performs semantic searches by making use
of ontologies (in OWL/RDF format). The current implementations load a single
domain ontology each; the ability to make use of multiple ontologies within a single
implementation is currently being considered, in order to support searching across
different corpuses or domains using a single front-end.

3.4 Fundamental Functions

3.4.1 Diversity of Users

K-Search supports different users and tasks by supporting both document and
knowledge retrieval and by providing an interface to perform three different types of
queries: : (i) pure semantic search via unique identification of
concepts/relations/instances (e.g. via URIs or unique identifiers); (ii) keyword-based
search performed on the whole document and (iii) keyword-in-context search.

Different implementations of K-Search are being evaluated using independent domain
ontologies, with users from multiple departments in R-R, who have differences in
knowledge requirements, based on the roles performed and the tasks being performed.
K-Search may be extended to other user types and domains, by importing ontologies
to match each domain as required.

3.4.2 Search Refinement: K-Search has two main methods of refining the queries.
First of all the user can use the search tab to insert more conditions, both selecting
additional concepts from the ontology or inserting new keywords, constraining further
the result set. Moreover when a search has been fired and the results returned, the user
can refine the results by clicking on one of the highlighted annotations or by
producing a graph of the results.

3.4.3 State of the Art Functions: Concerning the functions listed in D4.1, K-Search
is mostly focusing on the Advanced Search features.

Security: K-Search is accessed using a log-in screen. Security based on user profiles
is currently implemented such that access is provided to the entire corpus in an
implementation. A stricter security model would require the development of an

X-Media • Deliverable D.4.2 • Open University • Version 0.1 33

additional module to filter results within a corpus based on user profiles attached to
log-in information.

Relevance ranking: Traditional keyword indexing and document ranking is done in
parallel with ontology-based annotation, implemented within K-Search using Nutch,
because of the high quality indexing it provides, and the ability of Nutch to exploit the
strategies used by search engines. Semantic search in K-Search retrieves exact
matches, so that all results are equally ranked. The final result set contains the
intersection of the results of the (separate) keyword and semantic searches.

Internal and external database searching: K-Search provides support for querying
using SPARQL and SERQL, to retrieve knowledge currently from 3-store and
Sesame. K-Search is however able to make use of any suitable (RDF) triple store.

Wildcard searching: K-Search provides support for wildcard searching in the
keyword-based search, using the * character.

Advanced search features: K-Search supports the execution of Hybrid Search
queries (as described above) using a form-based approach. K-Search aims to provide a
mixed approach to searching based on a combination of keyword-based and ontology-
based search. The method is designed to overcome some of the limitations in the pure
semantic search that may suffer from unavailability of metadata

3.5 Innovative X-Media Functions

K-Search aims to provide the X-Media functions of Knowledge Lenses and
Perspective Building.

3.5.2 Knowledge Lenses: It provides mechanisms for querying RDF facts and
selecting and viewing query results. The visualization model allows to present the
query results according to a number of dimensions: as a list of ranked documents, as
aggregated metadata (e.g. via graphs or charts) with associated provenance, etc.
depending on a tasks goal (i.e. document retrieval Vs knowledge retrieval), thus
providing different knowledge lenses on the facts stored in the knowledge base. The
users can use the graph building functionality to switch knowledge lenses, choosing to
view the results plotted accordingly to their needs.

3.5.5 Perspective Building: The ontologies used for semantic search, combined with
a terminology recogniser, help to provide context and perspective for especially

X-Media • Deliverable D.4.2 • Open University • Version 0.1 34

inexperienced users, by providing structure to the search and aiding users in
identifying appropriate input for building and refining queries.

3.4 XXploreKnow!

XXploreKnow! is an ontology-based application, which supports the exploration and
retrieval of documents and facts contained in knowledge bases. In summary, research
contributions are reflected mainly in four distinctive features. Firstly, it is capable of
translating an unrestricted number of keywords to a ranked list of interpretations, of
which the user can choose to obtain the intended formal query. Secondly, it combines
factual search with document retrieval. This document retrieval is based on resource
descriptions with a degree of expressiveness not available in state-of-the-art tools.
They can be exploited to address complex IR tasks, where the user can pose
expressive queries which might involve general document metadata, document
structure as well as expressive description of the document's content. Thirdly, the
implemented data filtering mechanism allows the user to create customized views on
the KB, i.e. knowledge lenses on the KB. This mechanism can be declaratively
specified in the form of policies, which incorporate the different provenance-related
knowledge as well as the process knowledge available in X-Media. Finally,
XXploreKnow! features personalization functionalities, which are based on a rich
ontology-based model of the context.

3.4.1 Technical Description

XXploreKnow! is an ontology-based application that supports exploration and
retrieval of ontologies, semantic data contained in ontologies, as well as annotated
documents. Besides, it features personalization functionalities and a data filtering
mechanism to provide customized knowledge lenses to the semantic data. In
particular, semantic data are elements of RDF(S) /OWL ontologies such as concepts,
properties and individuals. They are manually added to the system using the
annotation tool discussed previously or automatically extracted from documents of
various formats and web pages by knowledge extractors. We will continue with a
brief presentation of the main UI components featured by XXploreKnow!.

 Concept Hierarchy View: A tree-based visualization of concept hierarchy
 Schema View: Visualizes the T-Box of an ontology. The user can explore the

T-Box by expanding and/or collapsing concept nodes in order to add
neighbours or filter neighbours from the view, respectively. This view is
linked to the concept hierarchy view such that in case a user clicks on a

X-Media • Deliverable D.4.2 • Open University • Version 0.1 35

concept in one view, the same concept is highlighted in the other view. This
way, the user always sees the position of the concept both in the hierarchy and
in the schema respectively.

 Concept Outline View: Shows the facets of the concept currently selected on
the schema and concept hierarchy view. In particular, it shows all properties
(as implied specified by domain / range restrictions and complex concept
descriptions) and all individuals of the concept.

 Query Definition View: Shows a multi-tree based representation of a
SPARQL query (which might represent a graph pattern). It facilitates the
specification of the formal SPARQL query by enabling the user to enter
keywords or to drag-and-drop ontology elements shown in the views discussed
previously. In the case of keywords, an interpretation process is triggered
which makes use of domain knowledge in the underlying ontology to translate
the entered keywords to a ranked list of SPARQL queries (the possible
interpretations). From this ranked list, the user can choose the intended
meaning. This way, the user does not have to cope with the syntax of the
formal query. Tran et al. discuss further details on the interpretation of
keywords in [Tran07int].

 Fact Result View: This view shows the results of the SPARQL query.
Whereas the constituent table view shows all the bindings to variables of the
query, the corresponding tree view shows property values for each of these
bindings.

Figure 9 below illustrates these UI components and shows a possible interaction
between the user and the system. At the beginning (STEP 1), the user enters
keywords which are processed by the interpretation service. The result is a list of
possible queries. The user then selects the intended query. Subsequently, the system
visualizes which portion of the schema the query corresponds to. Depending on the
action performed by the user, i.e., either he activates the “search" or the “xxplore"
button (STEP 2), subsequent interactions are either further exploration of the schema
or inspection of the search results. With “xxplore" (STEP 3a), the user can expand
nodes shown in the visualization of the query to traverse to neighbouring elements.
During this exploration, the user can drag and drop elements from the schema view
and the concept outline view to the query definition view (STEP 4) to further refine
the query. With “search" (STEP 3b), the SPARQL query is sent to the underlying

query engine. The results, which may contain also inferred facts, are then finally
shown to the user in the fact result view (STEP 5).

Fig. 9 XXploreKnow!

Besides this factual search, a combination of semantic search and classical index-
based search is also supported. This means that besides the exploration and retrieval
of facts contained in the KB as discussed above, the user can also retrieve documents
based on keywords and document annotations. The latter refers to expressive
descriptions of documents that capture general metadata, structure as well as the
content of the document. These descriptions are also stored in the KB in the form of
facts (A-Box assertions). Whereas document retrieval with keywords runs against an
inverted index (Lucene8), document retrieval based on resource descriptions are
specified in terms of SPARQL queries, which run against the KB. Further details on
document retrieval based on expressive resource descriptions can be found in
[Tran07res]. The next development of document retrieval in XXploreKnow! will be a

8 http://lucene.apache.org/

X-Media • Deliverable D.4.2 • Open University • Version 0.1 36

X-Media • Deliverable D.4.2 • Open University • Version 0.1 37

combination of classical index-based techniques with expressive resource
descriptions.
A further extension will extend XXPloreKnow! to retrieve multimedia documents, in
particular images.
In particular, UI components that support document retrieval are the following:

 Resource Result View: Show the list of ranked documents that are result either
of the keywords query or the SPARQL query based on resource descriptions.

 Resource View: Present the document to the user that is selected in the
resource result view.

In order to provide personalized knowledge lenses, XXploreKnow! features the
enactment of data filters, i.e., declarative policies that are defined with respect to
provenance-related information as discussed in WP1 deliverables. In particular, these
policies are based on the notions of trust and tasks. They are defined as concepts of a
policy ontology. These concepts build on the notions already defined in the
provenance ontology, i.e., meta-information to the facts such as the agent, the source,
the confidence degree and the process. Note that the notion of process is used to
represent tasks and bears information as to what agent (e.g. knowledge extractors,
employees) are involved in the task and what sources (information providers) are
relevant for the task. As an example, a data filtering policy for Fiat can be specified,
which specifically says which employees, which information sources and which
knowledge extractors are trustworthy / reliable. An extension of this policy captures
the notion of task, e.g. competitive analysis policy, which further restricts the
extractors, the employees, the sources of the Fiat policy to the ones involved in
(relevant for) the competitive analysis. Given a specific user and task, these policies
can be used by the underlying reasoner (e.g. KAON2) to infer which sources and
which agents are relevant, thus filtering the data accordingly. As a result, the user can
browse and search a virtual KB that contains only facts that are relevant for the
competitor analysis task. Further details on how to specify data filtering policies
based on meta-information can be found in [Tran08Fil]. UI components in
XXPloreKnow! that support this data filtering are:

 Task View: Support the definition of task policy that extends an organization
policy such as a Fiat policy.

X-Media • Deliverable D.4.2 • Open University • Version 0.1 38

 Task List View: An activation of a task triggers the data filtering mechanism
which computes a virtual ontology for the activated task, i.e., provide a
knowledge lens to the KB.

Currently, personalization functionalities are implemented for XXploreKnow!. They
are realized on the basis of an ontology-based context model which encompasses
several dimensions such as the user model, the resource model, the task model and the
environment model. For instance, interactions between the user and the system are
tracked to develop the user model. Information contained in the context model is
exploited by adaptation rules. For instance, when a user is working with a document,
an adaptation rule might be triggered, resulting in a list of recommendations
consisting of further documents which are possibly relevant w.r.t. to the current
context. Further information on such adaptation rules are personalization
functionalities as discussed in previous work [see Tran07adap].

3.4.2 Meeting the X-Media requirements

XXploreKnow! is developed to address the following top level requirements in WP4:

 Interoperability with the X-Media Architecture: It is based on the X-Media
Kernel. In particular, AccessKnow! of the Kernel is used to access the
underlying KB.

 Diversity of Users: Simple keyword search interface is provided for the casual
user and formal queries can be used by an expert. Also, different user policies
for data filtering can be defined to meet the information needs of different user
groups.

 Search Refinement: As discussed above, query refinement is supported either
through the addition of further keywords or via drag-n-drop.

 Knowledge lens: Supported through the discussed policy-based data filtering.
 Process Support: Process is considered as a task, which is used to filter

information not relevant to the task.
 Perspective Building: Both the data filtering and the personalization

functionalities can be used to adapt information provision to the context.

X-Media • Deliverable D.4.2 • Open University • Version 0.1 39

Currently, XXploreKnow! is customized to target the Competitors Scenario Forecast
Use Case. With respect to D13.2, the relevant insertion points are TIP1, TIP3 and
TIP8A and TIP8B, TIP9.

4 Subtask 4.2.3 Knowledge Lenses - Presentation of
Results
Knowledge lenses in the X-Media context, for the presentation of the results of
semantic search, encompass tools that support customisation based on users’ profiles
and specific knowledge and task requirements. In practical terms, this means the
provision of intuitive filters that present knowledge retrieved from different
perspectives, providing context that enriches the user experience.
The Issue Resolution use case may be used to illustrate how knowledge lenses can be
used to support the user in knowledge management: during the evidence collection
stage clustering methods may be used to categorise data, grouping assertions retrieved
based on potential causes of an issue defined, for instance. Table or tree lenses in this
case provide alternative methods for grouping data; a lens may be applied to the
overall data set to allow users to focus on a sub-set of the data, filtering out data based
on the level of confidence attached to each assertion retrieved, for instance. An
alternative lens could filter data based on media type.
Similarly, a knowledge lens in the Competitor Analysis use case could filter data
based on the type of the feature of current interest, e.g., cars with air bags for both
passenger and driver doors.

4.1 K-Views

A number of options for the presentation of search results were identified following
the analysis of user requirements for the Issue Resolution use case. The X-Media
vision demonstrator [refer D4.1 and D12.2] illustrates the options explored for the
presentation of results for this scenario, starting with tables and trees, and expanding
to include network graphs, parallel co-ordinates, a facetted browser, timelines and a
geographical visualisation metaphor. A focus session guided by the version of the
demonstrator described in D12.2, with end users at R-R from multiple departments
who work on different aspects of Issue Resolution cases allowed further refinement of
users’ knowledge management requirements, and helped to pinpoint aspects of each
option that mapped to users’ methods for problem solving. We discuss here the

analysis of user requirements leading to the option developed: the network graphs
used to visualise the results of searching.

The evidence collection and analysis stages in the vision demonstrator use two main
methods for clustering/categorising data:

1. The visual representation of classes derived from the causes ontology, using an
interactive method to drag assertions into each box representing a class, in the
version of the demonstrator illustrated in D4.1. This led to the idea of a
knowledge cloud in Fig. 10, the visual representation of all elements in a class,
using summaries of the assertions retrieved,

2. A causes trees to cluster evidence on each node of the tree, based on the
contribution of an assertion for or against the hypothesis that the node
represents the root cause of the issue identified.

Fig. 10: A knowledge cloud displaying previews of the contents of assertions contributing to the
assertion that the root cause of the issue being investigated is "Cause IJK". Please note that the
collection of documents displayd do not map to a specific use case. Further, portions of the image
have been deliberately obscured for reasons of confidentiality.

Both methods specified, for each assertion retrieved, whether it provided positive or
negative evidence for the assertion concerned. Further discussions with target users
recognised the limitations posed by the use of the absolute values PLUS and MINUS
only ; using a (percentage) scale to display the degree to which each assertion

X-Media • Deliverable D.4.2 • Open University • Version 0.1 40

contributes to (51-100%) or detracts from (0-49%) a root cause provides a richer
representation of the knowledge contained in each assertion.

A rooted, top-down tree was used to represent the causes tree in the preliminary
versions of the vision demonstrator. Exploring this metaphor further led to a
representation using a rooted graph, but in network form, in order to display, in
addition to the structure of the causes ontology used to categorise knowledge, the
relationships between assertions across multiple nodes in the tree. As is done for data
annotation in tools such as AKTiveMedia9 [Chakravarthy et al. 2006] colour
highlighting is used to provide an intuitive method for mapping nodes in the network
graph to concepts in the ontology. To aid users in determining areas to focus on
during data analysis (relative) node size was then mapped to the confidence that a
node represents the root cause of an issue being investigated, weighted against other
nodes for which evidence has been found that contributes to the hypothesis that these
nodes, rather, represent the root cause of the issue.

Fig. 11: The screen shot on the right (from the vision demonstrator) shows the contents of an
assertion on request. The graph on the left uses relative size to indicate the probability that the
“Cause QRP” (with the dark tan background) is the root cause of the issue being investigated.
Please note that portions of the image have been deliberately obscured for reasons of
confidentiality.

Close collaboration with end users ensured the design of the prototype for presenting
the results of semantic search maps to the ways in which users model information.
The next section provides a description of the prototype being developed based on the
analysis of user requirements and the user-centred design process followed.

9 http://www.dcs.shef.ac.uk/~ajay/html/cresearch.html

X-Media • Deliverable D.4.2 • Open University • Version 0.1 41

X-Media • Deliverable D.4.2 • Open University • Version 0.1 42

4.1.1 Technical Description

The presentation tool is built using the prefuse visualisation toolkit [Heer 2005].
Prefuse provides support for data input using readers for GraphML (an XML format),
prefuse data tables built from csv files, for instance, and from databases such as
MySQL, with inbuilt support for querying using SQL.
A more obvious choice for a graph visualisation library would be TouchGraph10 (TG).
However, in addition to the benefits of prefuse (detailed in [Heer 2005]), TG is now
being developed on a commercial basis, so that there is significantly lower support for
development using (older opensource) TG libraries than for prefuse, which is
currently fully open source and continues to be updated on a regular basis.
Fig. 12 shows a network graph drawn using prefuse, with central nodes colour-coded
to match the causes ontology shown on the far left in Fig. 11. Concept nodes, which
encompass knowledge clouds (as in Fig. 1Error! Reference source not found.0),
have node size weighted based on the relative probability that a concept represents the
root cause of the issue under investigation. Cause QRP can be seen in the graph in
Fig. 12 to have the strongest probability of being the root cause of the issue under
investigation, based on the knowledge retrieved to date and user interaction with this
knowledge (that brings expertise to data analysis). Two additional filters are currently
available; based on feedback from end users at RR on the data attributes commonly
studied when searching for information during Issue Resolution. These include, but
are not limited to, the confidence that a specified assertion contributes to or detracts
from a hypothesis formulated on the root cause of an issue, and the recency of a
report.
Each leaf node in the graph is displayed using a thumbprint that provides a preview of
the contents of the assertion it represents. Hovering the mouse over a node brings the
focus to it: this changes the background of a concept node to red, or paints a red
border round a leaf node (representing assertions), in addition to highlighting (in pale
orange) the links to and the focus node’s immediate neighbours. A leaf node for the
concept Cause DEF is highlighted in Fig. 12 this pops up extra information, showing
the confidence that this assertion contributes to this potential root cause to be 69%,
i.e., it provides evidence that the knowledge the assertion contains contributes
positively to this hypothesis.
Using dynamic slide queries as described in [Ahlberg 1994] filters for confidence
level and report (generation) date are used to highlight each leaf node meeting the

10 http://touchgraph.com/

current filter criteria using a green ring. An alternative implementation could hide or
fade out nodes that do not meet query criteria; this however removes important
contextual information that is still relevant to data analysis, and is therefore not a
preferred option. Allowing users to set preferences for either method for visual
feedback during querying will be explored during the user evaluations to follow.
Finally, double-clicking on a leaf node retrieves the source document from which an
assertion is retrieved, using external applications, e.g., Adobe Reader for PDF
documents and a web browser for HTML.

Fig. 12: A network graph drawn using the prefuse visualisation library, showing the relationships
between concepts in a causes ontology, and thumbprints providing a preview of the assertions
retrieved that contribute to the hypothesis for each concept being the root cause of the issue
under investigation. Please note that portions of the image have been deliberately obscured for
reasons of confidentiality.

4.1.2 Meeting the X-Media requirements

TIPs 3 and 5 for the Issue Resolution use case involve data analysis for the
formulation and verification of hypotheses for the root cause of the issue being
investigated. Both stages require the use of knowledge lenses to provide alternative
perspectives on search results, customised based on user profiles and information
requirements. Users require support for exploring the evidence collected from legacy

X-Media • Deliverable D.4.2 • Open University • Version 0.1 43

X-Media • Deliverable D.4.2 • Open University • Version 0.1 44

data, in addition to new evidence obtained due to the creation of new documents (e.g.,
test results). During hypothesis formulation it may also be necessary to (manually)
categorise data into classes defined in the domain ontology, where automated
classification has been unsuccessful, and/or to reorganise the evidence collected to
reflect users’ understanding of the knowledge it contains, in addition to setting
confidence values for the assertions retrieved.

The knowledge presentation tool being developed by Sheffield, K-Views, provides a
simple, graphical method for exploring data. The previews of the assertions retrieved,
organised according to the ontology loaded, allow users to quickly obtain an overview
of the evidence collected, in addition to the relationships between data. That a single
assertion may be assigned to multiple classes is obvious from the graph in Fig.12,
suggesting to users the possibility of relationships between the potential causes of the
issue under investigation. The supplementary information provided by the confidence
levels aids users in determining to which degree each assertion contributes to the
strength of a particular hypothesis. The concept of knowledge lenses, implemented
using dynamic query sliders, allows users to quickly filter data to highlight assertions
that meet criteria specified.

The following focuses specifically on the X-Media requirements (the numbering
comes from D4.1) for:

3.1 Interoperability

 3.1.1 Interoperability between Tools and Tool Components: K-Views is
developed using Java, and the open-source prefuse visualisation toolkit, which
uses Java2D. It is therefore platform-independent, and should be compatible
with other Java-based tools for WP4.

 3.1.2 Interoperability with the X-Media Architecture: K-Views is still under
development; in its final form it will read in search results returned using RDF
triples via the X-Media kernel, using Fresnel lenses as in LENA to interpret the
content and visualise the results, customised based on requirements.

 3.1.3 Interoperability with Relevant Standards: Input to K-View is in
RDF/XML format.

3.2 Performance

X-Media • Deliverable D.4.2 • Open University • Version 0.1 45

 3.2.1 Response Times for Large Scale, Cross Media Search: Tests for system
response for the visual presentation of the results of search have not yet been
performed; these require the results of search, to be retrieved via the X-Media
kernel, which will be available closer to the end of the integration phase.
Although K-Views is expected to read in large amounts of data (from search
results), for usability reasons (good system response and low user cognitive
load) the amount of data that will be displayed on the screen at a time is
restricted (by folding sub-trees or filtering out less relevant data, based on users’
information requirements).

 3.2.2 Quality of Results: a useful measure of quality for the visualisation tool
requires user evaluation, as this is dependent on users’ ability to interpret the
presentations effectively.

3.3 Handling Heterogeneous Knowledge

 3.3.1 Dynamic and Uncertain Data: K-Views does not handle dynamic and
uncertain data directly. However search results returned should include
confidence levels set for each assertion retrieved, and this information is
displayed along with other data properties using the network graph. Further
development of the tool may consider interactive editing of confidence levels,
feeding this information back to the X-Media data stores via the kernel.

 3.3.2 Images, Text and Raw Data: K-Views provides previews of assertions
retrieved using thumbprints. However the actual data represented by each
assertion is handled by external applications registered to handle the source
documents from which the assertions are retrieved.

 3.3.3 Multiple Domain Models: K-Views is to model graphs based on domain
or other relevant ontologies (e.g., a causes ontology for Issue Resolution), input
in RDF/XML format.

3.4 Fundamental Functions

 3.4.1 Diversity of Users: K-Views is being developed with a focus on the
requirements of end users gathered for the Issue Resolution use case, to support
knowledge seekers in exploring query results. It is envisaged that it will be
customisable and extendable to knowledge exploration in other use cases.

X-Media • Deliverable D.4.2 • Open University • Version 0.1 46

 3.4.2 Search Refinement: K-Views provides simple methods for filtering
search results based on data properties, and provides multiple perspectives on
data using knowledge lenses. It is however not a search tool and does not
modify the underlying result set.

 3.4.3 State of the Art Functions:

 Security: K-Views reads in search results, which are expected to have already
had security restrictions applied to data retrieved. Therefore security restrictions
are not directly handled.

3.5 Innovative X-Media Functions

 3.5.2 Knowledge Lenses: Users will be provided with mechanisms for
visualising search results from different perspectives, by applying filters to the data,
focusing on sub-sets as required, and highlighting different properties of data, in order
to weight hypotheses based on the properties most relevant to issue resolution.

4.2 The CORPORUM Summarizer

Text Summarisation denotes the automated production of summaries by a computer
program. In environments where both the production and consumption of large
amounts of text documents is essential, Text Summarisation can be a means of
achieving a swift overview of the content in a certain electronic document without
having to download/open and read it. As with manual summaries, automated
summarisation is in most cases not a replacement for actually reading a document, but
should rather be regarded as a decision help whether to read a document in question or
not, and thus can ease the load on knowledge workers.

According to [Hovy and Lin 1997], there are two ways to view text summarisation
either as text extraction or as text abstraction. Text extraction means to extract pieces
of an original text on a statistical basis or with heuristic methods and put together it to
a new shorter text with the same information content. Text abstraction is to parse the
original text in a linguistic way, interpret the text and find new concepts to describe
the text and then generate a new shorter text with the same information content.

The main focus in X-Media will be the presentation of summaries along a timeline in
order to reflect the development in, e.g., an issue resolution case. The main challenge
in this context will be to identify new versus given information across multiple

X-Media • Deliverable D.4.2 • Open University • Version 0.1 47

documents in order not to present identical text parts in different summaries that are
presented to the user.

The scientific evaluation of the quality of automatically generated summaries is not
straight forward, as quality in this context is rather subjective and to a high degree
dependent on the recipient’s background knowledge of the matter in question.
However, an evaluation methodology, based on reference summaries has been
proposed by [Hassel and Dalianis 2005] and evaluated in for example [deSmedt et al.
2005]. Here, a number of test users manufacture an extraction based summary each by
choosing a certain number of sentences to be included into the summary. Based on the
user-generated summaries, a reference summary is generated, containing the sentences
chosen by the most users. This reference summary then serves as gold standard when
evaluating the automatically generated summaries. In X-Media, such intrinsic
measures (focusing on the output texts only) of the summarisation tool will be used in
Phase 1 of the project, whereas extrinsic evaluation methods (focusing on the degree
of assistance in user tasks) will need to be devised once the system is put to use in the
end user environments

4.2.1 Technical Description

The summarisation tool proposed X-Media is based on CognIT’s CORPORUM
Summarizer [Bremdal 2000]. This tool is an extraction-based summariser, developed
within the OnToKnowledge project, building on CognIT’s CORPORUM natural
language processing tool OntoExtract [Engels and Lech 2003]. OntoExtract is an NLP
tool, which analyses documents and extracts the core concepts and named entities as
well as associations between them, thus establishing a lightweight concept graph. This
semantic representation is then used as a basis for the choice of sentences to be
included in the summary.

As mentioned above, the main focus of the X-Media Summariser will be the
presentation of extracts of document on a given incident (i.e., issue resolution case)
along a timeline, thus providing an overview of the development in the case, as
illustrated in the mock-up below (Figure 13).

Figure 13. The summariser interface (vision demonstrator) . Please note that portions of the text
have been deliberately obscured for reasons of confidentiality.

The CORPORUM Summarizer is currently implemented as a Microsoft Component
Object Model (COM) Component, thus relying on a MS Windows platform to run. In
order to make the Summarizer interact with the X-Media environment, there will be
implemented an X-Media JAVA-wrapper for the interaction with other components.
This wrapper will enable the interaction with, e.g., the Semantic Scratchpad (see
Chapter 5) in order to import a set of documents that is of interest to the user, the
imported documents will then be enhanced with information from the X-Media
Knowledge base, such as information on provenance, in order to ensure the correct
presentation along the publication timeline (see Figure 14 below). The X-Media
Wrapper will provide an API that can be used by other X-Media presentation tools for
inclusion of the summary presentation.

X-Media • Deliverable D.4.2 • Open University • Version 0.1 48

Figure 14 The CORPORUM summariser in the X-Media architecture

4.2.2 Meeting the X-Media requirements

Requirements from the X-Media Use Cases

A typical use case for the X-Media summarisation tool will be constituted within TIP
2 and 3 (D4.1) of the issue resolution use-case, where the harvesting, gathering and
browsing of large amounts of information is required.

Interoperablility

The X-Media CORPORUM wrapper will provide a JAVA API that ensures the
interoperability with other X-Media System Components. RDF/OWL interoperability
will ensure the interaction with the X-Media Knowledge base.

5 Sub task 4.3.1 Big Organizer for X-Media
The Semantic Scratchpad (or BOX) is a special personalized, task-based and virtual
semantic repository storing task-specific facts. A single BOX object provides read-
only access to a given subset of the knowledge stored within an X-Media system;

X-Media • Deliverable D.4.2 • Open University • Version 0.1 49

X-Media • Deliverable D.4.2 • Open University • Version 0.1 50

means are provided to access such knowledge in tabular and graph format (however, it
is not guaranteed that both formats are supported by a given BOX instance).

5.1 Semantic Scratchpad

The Semantic Scratchpad is instantiated by means of a Java component named
BOXHandler (available through the X-Media Kernel), which manages BOX objects.
In the first Scratchpad release, it is provided as a BOX implementation which selects
knowledge by means of a SPARQL “SELECT” query dispatched to a given
AccessKnow repository; such implementation provides access to the selected
knowledge only in tabular format. At later stages of the project, other implementations
may be provided which will enable access to the knowledge in graph format also, and
to select knowledge by accessing the Kernel component XMSearchAndIndexHandler
(see [D11.1]); moreover, more powerful ways of selecting knowledge will be also
evaluated, such as Networked Graphs (see [Schenk 2007]).

5.1.1 Technical Description

A BOX object is referenced by means of a URI; moreover, it has associated an X-
Media user which is the BOX “owner”; possibly, a BOX is also described by an
extensible set of metadata, such as title, description…
The BOXHandler manages an “index” of BOXes, allowing for insertion, deletion, and
retrieval of BOXes. Entries of such index hold associations between a BOX and a pair
user, task (or user group, task). The BOXHandler allows to add (or remove) an
association between a BOX and a pair user, task (or user group, task), and to retrieve
the BOXes associated to a pair user, task. Users, tasks and BOXes are referred by
means of their URIs. Each action is invoked on behalf of some authenticated X-Media
user; a BOX security layer exists which checks whether a given user has the proper
rights to perform the requested action; such security layer also manages allocations of
access rights: the first Scratchpad release may not feature an implementation of such
security layer, and later versions will provide a Unix-like implementation (i.e. the
BOX owner will grant read/write permissions to its groups and to the other users).

According to deliverable [D4.1], Section 5.4.1, the Scratchpad is also supposed to
feature means to set up access control on the knowledge it manages. However, given
that the Scratchpad basically provides filtered access to other X-Media knowledge
repositories, responsibility of access control checking is also delegated to the target
knowledge repositories.

X-Media • Deliverable D.4.2 • Open University • Version 0.1 51

BOX Browser

As a sample usage of the BOX APIs, a (generic) BOX Browser web application will
be provided, which will allow an X-Media user to login, manage his/her BOXes, and
browse their content (possibly by exploiting the presentation facility of the X-Media
knowledge lenses).
The BOX Browser code will provide a baseline that may be further customized by
developers in order to build domain specific applications.
Interoperability
The Scratchpad largely depends on other X-Media Kernel modules, such as
AccessKnow, the XMSearchAndIndexHandler, and the Process Support components
(see [D11.1]). It is integrated (and deployed) in the X-Media Kernel. Moreover, it uses
standards such as SPARQL.

5.1.2 Meeting the X-Media requirements

Performance

The Scratchpad performance relies on the performance of the targeted X-Media
knowledge repositories.

Handling Heterogeneous Knowledge

The Scratchpad handles heterogeneous knowledge by providing support for targeting
multiple knowledge repositories, and by also addressing (at later stages) the Kernel
XMSearchAndIndexHandler component – which in turn is supposed to handle both
semantic and full-text search (see [D11.1]).

Fundamental Functions

As the Scratchpad doesn’t envisage a direct interaction with end user, the
requirements listed in the “Fundamentals Functions” Section of deliverable [ID4.1]
don’t apply.

Innovative X-Media Functions

The Scratchpad doesn’t directly fit in any of the categories outlined in Section
“Innovative X-Media Functions” of deliverable [ID4.1]; nonetheless, it is rather to be
considered a fundamental means to achieve all of the innovative functions therein
illustrated: indeed, it can be used as task-oriented selection and filtering tool by
Knowledge Lenses components, it can used in order to contextualize user activity by
Process Support components, and it is related with Perspective Building in that it

X-Media • Deliverable D.4.2 • Open University • Version 0.1 52

gives valuable information about relation between user activity (in terms of tasks
being accomplished) and consumed knowledge.

Use cases

The Semantic Scratchpad is explicitly mentioned as Technology Insertion Point in all
the use cases described in deliverable [D13.2], and in the “Issue Resolution Test Bed”
and “Non Destructive Evaluation Test bed” use cases in deliverable [D12.2]. It may
be the case that, in some of the cited use cases, also the BOX Browser will be
employed in order to fully match the requirements.
Within project Phase 1, the Semantic Scratchpad will be deployed in the “Competitors
Scenario Forecast” FIAT use case (see [D13.2]).

6 Subtask 4.3.2 Basic Process Support
Tools for process-support are primarily dedicated to assist individual users in keeping
track of and staying aware of tasks, in particularly with respect to different
information that may be associated to emails, i.e. reports, emails, spreadsheets,
images.

6.1 The Koblenz Email tool

Email is a vital tool for debate, knowledge sharing and distribution (e.g. by sending
around attachments). One goal of the Koblenz Email tool is to provide emails and
associated metadata about persons, tasks, and attachments to the X-Media knowledge
base. Additionally, easy-to-use task management features will be supported focussing
on the provision of task-awareness to users and leveraging retrieval based on metadata
not only about documents, but also people and tasks. Moreover, services such as
automatic notification based on different criteria will be supported, e.g. notification
based on a newly defined issue resolution process.

6.1.1 Technical Description

The tool is implemented as a plugin for the Thunderbird email client. It makes use of
the X-COSIM (Franz et al. 2007) framework that is partly used in X-Media
knowledge representation for storing email, person, and task metadata compliant to
the X-Media KB.

Fig 15 The semantic email client

6.1.2 Meeting the X-Media requirements

Being a common knowledge management tool, email is part of nearly every use case
provided by the industrial partners of X-Media. We will focus, however, on the
scenarios identified by TIP 9 from Fiat and TIP 1 from Rolls-Royce.

The Thunderbird mail client is available for multiple operating sytems and supports
different mail standards like IMAP and POP. The plugin developed by Koblenz is
platform-independent as well, being based on the Thunderbird runtime environment
and the X-COSIM Java API. To integrate email-related support within X-Media
scenarios where no client-side installation is possible, Koblenz and Quinary are also
developing a server-side solution that reads emails sent to a particular account, e.g. x-
media@example.com, and transfers them to the X-Media KB.

7 Conclusions
This deliverable has reported our progress in developing the knowledge sharing tools
that will be used to build the first phase of X-Media test beds. In summary our
achievements have been:

• Building annotation tools for open document format and images which can
annotate regions.

• Four different search and browse tools each exploring different research lines
on user interaction and search refinement. Search is a central knowledge
sharing task and the comparison of multiple search modes will allow us to
evaluate the advantages and disadvantages of different approaches.

X-Media • Deliverable D.4.2 • Open University • Version 0.1 53

X-Media • Deliverable D.4.2 • Open University • Version 0.1 54

• Innovative work has been undertaken on the presentation of search results,
particularly of summary views of semantic data.

• A ground breaking semantic scratchpad prototype has been built. The
scratchpad idea came directly from requirements work with users and is
central to the envisioned X-Media knowledge sharing and reuse paradigm.

• A first prototype of a semantic email tool has been built to demonstrate key
process support ideas.

Already in phase 1, these tools address many of the X-Media requirements. These are
itemised for each tool but here we note particularly that the tools all address the issue
of interoperability. In this phase, interoperability is gained through compliance with
the X-Media kernel and through the wide use of the Eclipse RCP which will facilitate
the packaging of task driven tools into use case driven platforms. In addition, user-
centred design is important in many of the tools, whether through better search
support or the presentation of knowledge, using technologies like Fresnel lenses or
summarisation of text or semantic metadata.
The X-Media consortium has responded to the requirements for knowledge sharing
and process support with a range of task centric tools that make are individually
innovative while working within the constraints of the X-Media architecture to
facilitate interoperability. The next tasks are to assemble the individual tools into the
use case test beds and to evaluate the tools in context.

8 References

[ID4.1] V. Uren, D. Petrelli, P. Cimiano, T. Franz, V. Lanfranchi, Y. Lei, M. Weiten,
P. Slavazza, T. Christopher, F. Ciravegna, L. Schmidt-Thieme, L. Gilardoni,
Specification of Methods for Knowledge Sharing, X-Media Internal Deliverable 4.1,
2006.

[D4.1] V. Uren et al., Specification of Knowledge Sharing Systems, X-Media
Deliverable D4.1, February 2007.

[D11.1] C.Biasuzzi, P.Slavazza, L.Gilardoni, M.Ferraro “Integration Framework
Specification”, X-Media Deliverable 11.1, 2007.

[D12.2] Dadzie, A et al., Specification of System Functionalities for the First Release
of the Rolls-Royce Test Bed, X-Media Deliverable 12.2, 2007.

X-Media • Deliverable D.4.2 • Open University • Version 0.1 55

[D13.2] Giordianino, M. et al., Specification of System Functionalities for the First
Release of FIAT Test Beds, X-Media Deliverable 13.2, 2007.

[Ahlberg 1994] C. Ahlberg and B. Shneiderman, AlphaSlider: A compact and rapid
selector. Proc. CHI ’94 (1994) 365-371.

[Arndt et al. 2007] Richard Arndt, Raphael Troncy, Steffen Staab, Lynda Hardman,
Miroslav Vacura, COMM: Designing a Well-Founded Multimedia Ontology for the
Web, proceedings of the 6th International Semantic Web Conference, 2007.

[Bremdal 2000] Bremdal, B.: The CORPORUM Summarizer. CognIT white paper.
http://www.cognit.no Halden, Norway: 2000.

[Chakravarthy et al. 2006] Chakravarthy, A., Ciravegna, F., Lanfranchi, V.: Cross-
media document annotation and enrichment. In: Proceedings of the 1st Semantic
Authoring and Annotation Workshop (SAAW2006).

[deSmedt et al. 2005] de Smedt, K., A. Liseth, M. Hassel, H. Dalianis 2005. How
short is good? An evaluation of automatic summarization. In Holmboe, H. (ed.)
Nordisk Sprogteknologi 2004. Årbog for Nordisk Språkteknologisk
Forskningsprogram 2000-2004, pp 267-287, Museum Tusculanums Forlag.

[Engels and Lech 2002] Robert H.P. Engels and Till C. Lech: Generating Ontologies
for the Semantic Web. In: J. Davies, D. Fensel, F. van Harmelen (eds): Towards the
Semantic Web: Ontology-driven Knowledge Management. Wiley, 2002.

[Franz et al. 2007] Thomas Franz, Steffen Staab, Richard Arndt, The X-COSIM
Integration Framework for a Seamless Semantic Desktop, proceedings of the 4th
International ACM Conference on Knowledge Capture, 2007

[Hassel and Dalianis 2005]. Hassel, M and H. Dalianis. Generation of Reference
Summaries. In the proceedings of the 2nd Language & Technology Conference:
Human Language Technologies as a Challenge for Computer Science and Linguistics,
April 21-23 2005, Poznan, Poland.

[Heer 2005] J. Heer, S. Card, and J. Landay, Prefuse: A toolkit for interactive
information visualization. Proc. CHI ’05 (2005) 421-430.

[Hovy and Lin 1997] E. Hovy and C-Y Lin. 1997. Automated Text Summarization in
SUMMARIST. in Proceedings of the Workshop of Intelligent Scalable Text
Summarization, July.

X-Media • Deliverable D.4.2 • Open University • Version 0.1 56

[Lei 2006] Yuangui Lei, Victoria Uren, and Enrico Motta, SemSearch: A Search
Engine for the Semantic Web, in proceedings EKAW 2006, Managing Knowledge in a
World of Networks, Podebrady, Czech Republic, 2006.

[Lei et al.] Yuangui Lei, Vanessa Lopez, Enrico Motta, and Victoria Uren, An
Infrastructure for Semantic Web Portals, to be published in Journal of Web
Engineering.

[Pietriga et al. 2006] Emmanuel Pietriga, Christian Bizer, David Karger, Ryan Lee,
Fresnel: A Browser-Independent Presentation Vocabulary for RDF, proceedings of
the 5th International Semantic Web Conference, 2006

[Schenk 2007] S. Schenk, S. Staab. Networked RDF Graphs. Technical Report
3/2007, Institute for Computer Science, University of Koblenz, 2007.

[Spärck Jones 1999] Spärck Jones, K. 1999. Automatic Summarizing: factors and
dimensions. In Mani and Maybury (eds.): Advances in Automatic Text
Summarisation. Cambridge, Mass.: MIT Press

[Tran06adap] Duc Thanh Tran, Philipp Cimiano, Anupriya Ankolekar. Rules for an
Ontology-based Approach to Adaptation. In Proceedings of the 1st International
Workshop on Semantic Media Adaptation and Personalization. Athen, Greece.
December 2006.

[Tran07int] Duc Thanh Tran, Philipp Cimiano, Sebastian Rudolph, Rudi Studer.
Ontology-based Interpretation of Keywords for Semantic Search. In Proceedings of
the 6th International Semantic Web Conference, pp. 523-536. Busan, Korea,
November 2007.

[Tran07fil] Duc Thanh Tran, Peter Haase, Bernado Grau, Ian Horrocks, Boris Motik:
Representation and Querying of Metalogical Information. Planned for submission to
AAAI. 2008.

[Tran07res] Duc Thanh Tran, Stephan Bloehdorn, Philipp Cimiano, Peter Haase
Expressive Resource Descriptions for Ontology-Based Information Retrieval. In
Proceedings of the 1st International Conference on the Theory of Information
Retrieval (ICTIR'07), 18th - 20th October 2007, Budapest, Hungary, pp. 55-68.
October 2007.

X-Media • Deliverable D.4.2 • Open University • Version 0.1 57

[Uren 2006] Victoria Uren and Enrico Motta, Semantic Search Components: a
blueprint for effective query language interfaces, in proceedings EKAW 2006,
Managing Knowledge in a World of Networks, Podebrady, Czech Republic, 2006.

[Uren et al.] Victoria Uren, Yuangui Lei, Vanessa Lopez, Haiming Liu and Enrico
Motta, Marina Giordanino, The usability of semantic search tools: a review, to be
published in Knowledge Engineering Review.

[Zhou 2007] Qi Zhou, Chong Wang, Miao Xiong, Haofen Wang and Yong Yu,
SPARK: Adapting Keyword Query to Semantic Search, proceedings of the
International Semantic Web Conference (ISWC/ASWC), Busan, Korea, 2007.

